Keyword

Agricultural land management

30 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 30
  • Categories    

    The project brought together a group of Australian researchers and managers with a broad range of expertise to identify current and emerging economies (‘drivers’) affecting regional agricultural landscapes and to suggest beneficial transformational changes for successful adaptation. A key challenge in these landscapes is altering how we use the land for ongoing, viable production while increasing native biodiversity. The group:<ul style="list-style-type: disc;"> <li>identified the major historical influences on Australian land use and the current social and economic drivers that are likely to increase in the future</li> <li>assessed the condition of five agro-climatic regions (adapted from Williams et al., 2002 and Hobbs and McIntyre, 2005) using a Delphi method. A small (4-person) expert panel scored the impact of historical and future scenarios on ten sustainability indicators (biodiversity, water, soil, social capital, built capital, food/fibre, carbon, energy, minerals and cultural). Five regions were chosen: Southern Mediterranean, Northern tropical, Central arid, North-east subtropical, and South-east temperate. This was an iterative process whereby scores were revisited until internal consistency between regions, scenarios, and indicators was achieved</li> <li>made projections of regional condition under the four global Representative Concentration Pathways (RCPs) based on van Vuuren et al. (2011)</li> <li>developed recommendations about land use and management, institutional and policy arrangements and social processes that will assist adaptation towards a values-rich vision of Australia in 2100.</li></ul>

  • Categories    

    <br>Hermitage Research Station (28&deg; 12’ S, 152&deg; 06’ E) situated near Warwick, is the site of a 33 year study of carbon cycling, storage and emissions in a southern Queensland winter cereal system. Mean annual temperature at the site is 17.5&deg;C and mean annual rainfall is 685&nbsp;mm. The soil is a Vertosol containing 65% clay, 24% silt, and 11% sand. Treatments at the trial included stubble burnt (SB), stubble retained (SR), conventional tillage (CT), no tillage (NT), nitrogen fertiliser added (NF) and no nitrogen fertiliser added (N0). It has provided guidance to farmers on optimising nitrogen use efficiency through fine tuning rates to meet crop need, e.g. delivering nitrogen when it is needed by the crop possibly using split applications and coated fertilisers with slower nutrient release profiles. Sourcing nitrogen from pulse crop and pasture was also studied as an option for meeting nitrogen needs with lower emissions and reduced cost.</br>

  • Categories    

    This dataset comprises spatially and temporally dynamic estimates of the monthly latent heat flux (λE) and sensible heat flux (H) for all of Australia. The available energy (A, being net radiation [Rn] less the gound heat flux [G]) can be obtained by adding the λE and H datasets provided. Energy variables have been provided as hydrological equivalent units of depth, normalised to daily rates (mm/d). TERN OzFlux Surface Energy Balance (SEB) data were used to scale MODIS-based covariates of surface temperature less air temperature (Ts – Ta) and Rn using a Spatial and Temporal General Linear Model (ST-GLM) to third order. The ST-GLM SEB model was implemented across all of Australia on a 0.005° spatial grid (~ 500 m) on a monthly timestep from March 2000 through June 2023. Coefficients of the model were determined from the OzFlux network of eddy covariance flux tower data. Three flux tower sites were used to independently validate the accuracy of the model, being Calperum, SA, Howard Springs, NT, and Tumbarumba, NSW. The mean absolute difference (MAD) for λE, H and A was estimated as: 0.37, 0.39 and 0.34&nbsp;mm/d, respectively. The relative errors determined by the MAD percentage (MADP) for λE, H, and A were estimated to be: 16%, 26%, and 9%, respectively. This dataset represents a new pathway for operational regional- to global-scale estimation of dynamic SEB variables.

  • Categories    

    This is Version 2 of the Australian Soil Organic Carbon product of the Soil and Landscape Grid of Australia.<br /><br /> The map gives a modelled estimate of the spatial distribution of total organic carbon in soils across Australia.<br /><br /> It supersedes the Release 1 product that can be found at <a href="https://doi.org/10.4225/08/547523BB0801A">https://doi.org/10.4225/08/547523BB0801A</a><br /><br /> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels).</p> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Mass fraction of carbon by weight in the < 2&nbsp;mm soil material as determined by dry combustion at 900 Celsius Units: %;</li> <li>Period (temporal coverage; approximately): 1970-2021;</li> <li>Spatial resolution: 3 arc seconds (approximately 90&nbsp;m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF</li></ul>

  • Categories    

    <br>The aim of this project is to compile land use and management practices and their observed and measured impacts and effects on vegetation condition. The results provide land managers and researchers with a tool for reporting and monitoring spatial and temporal transformations of Australia’s native vegetated landscapes due to changes in land use and management practices. Following are the details about Goorooyarroo Nature Reserve Site 2, ACT, Australia </br><br> Pre-European benchmark-analogue vegetation: The site was originally woodlands on the deeper soils of the lower slopes and flats (<em>Eucalyptus blakelyi</em> and <em>Eucalyptus melliodora</em>) (McIntrye et al 2010). </br><br> Brief chronology of changes in land use and management:<ul style="list-style-type: disc;"> <li>1819: Area managed by indigenous Ngunnawal people</li> <li>1826: Sheep grazing with shepherds commenced</li> <li>1860: Fences constructed - continuous stocking with sheep commenced</li> <li>1905: Area used for sheep grazing - continuous /set stocking</li> <li>1920: Fallen timber collected for firewood started</li> <li>1961: Mature trees on the site were ring barked to promote pasture grasses</li> <li>1973: Dead and fallen trees felled for fire wood</li> <li>1979: Bushfire burns through the area</li> <li>1994: Mulligans Flat Nature Reserve established</li> <li>1995: Continuous stocking with sheep grazing ceased</li> <li>1995: Collection of firewood ceased</li> <li>1995: Pasture improvement ceased</li> <li>1996: Kangaroo population begins to rapidly increase</li> <li>2006: Roo proof fence completed</li> <li>2006: Commenced annual removal of pest species of plants and animals</li> <li>2010: Commenced annual Kangaroo cull.</li></ul></br>

  • Categories    

    <br>The aim of this project is to compile land use and management practices and their observed and measured impacts and effects on vegetation condition. The results provide land managers and researchers with a tool for reporting and monitoring spatial and temporal transformations of Australia’s native vegetated landscapes due to changes in land use and management practices. Following are the details about Mulligans Flat Nature Reserve. </br><br> Pre-European benchmark-analogue vegetation: the site was originally woodlands on the deeper soils of the lower slopes and flats (<em>Eucalyptus blakelyi</em> and <em>Eucalyptus melliodora</em>) (McIntyre et al. 2010). </br><br> Brief chronology of changes in land use and management:<ul style="list-style-type: disc;"> <li>1819: Area managed by indigenous Ngunnawal people</li> <li>1826: Sheep grazing with shepherds commenced</li> <li>1860: Fences constructed - continuous stocking with sheep commenced</li> <li>1920: Fallen timber collected for firewood started</li> <li>1994: Mulligans Flat Nature Reserve established</li> <li>1995: Continuous stocking with sheep grazing ceased</li> <li>1995: Collection of firewood ceased</li> <li>1996: Kangaroo population begins to rapidly increase</li> <li>2006: Predator proof fence completed</li> <li>2008: Commenced annual removal of pest species of plants and animals</li> <li>2010: Commenced annual kangaroo cull.</li></ul></br>

  • Categories    

    <br>The aim of this project is to compile land use and management practices and their observed and measured impacts and effects on vegetation condition. The results provide land managers and researchers with a tool for reporting and monitoring spatial and temporal transformations of Australia’s native vegetated landscapes due to changes in land use and management practices. Following are the details about Organ Pipes National Park, Volcanic Plains Bioregion, Victoria. </br><br> Pre-European reference-analogue vegetation: Treeless basalt plain predominantly grassland dominated by Kangaroo Grass <em>Themeda triandra</em> with an array of inter-tussock species. </br><br> Brief chronology of changes in land use and management:<ul style="list-style-type: disc;"> <li>1830: Indigenous people manage the area</li> <li>1835: Sheep grazing commenced (shepherds)</li> <li>1851: Alienated from the Crown as freehold and fenced</li> <li>1851-1965: Area managed for dairying, an orchard and cropping and grazing modified pastures</li> <li>1965: Agricultural production abandoned</li> <li>1965-1986: Area minimally managed</li> <li>1972: Organ Pipes National Park declared</li> <li>1986-1992: Commenced species re-introduced site with supplemental plantings. Area managed to control weed and further incursions</li> <li>1989-2003: Repeated monitoring. Area lightly grazed by rabbits and macropods</li> <li>1993: Site burnt [prescribed fire]; supplemental re-vegetation with indigenous local species </li> <li>1995: Site was burnt [prescribed fire]</li> <li>1997: Site was burnt [prescribed fire] followed by drought</li> <li>2003: Ceased monitoring and enhancement to the site</li> <li>2004-10: Minimal intervention.</li></ul></br>

  • Categories    

    <br>The aim of this project is to compile land use and management practices and their observed and measured impacts and effects on vegetation condition. The results provide land managers and researchers with a tool for reporting and monitoring spatial and temporal transformations of Australia’s native vegetated landscapes due to changes in land use and management practices. Following are the details for the Big Scrub Rocky Creek Dam, NSW. </br><br> Pre-European benchmark - analogue vegetation: The site was originally Lowland Subtropical Rainforest on basalt-derived and alluvial soils. The forest is distinguished by its dense, uneven canopy comprised of typically two to three tall tree layers. Eucalypts and brushbox (<em>Lophostemon confertus</em>) may be present as sparse emergent. Characteristic life-forms include buttressed trees, strangler figs, stands of bangalow palms (<em>Archontophoenix cunninghamiana</em>), woody vines and large epiphytes. </br><br> Brief chronology of changes in land use and management:<ul style="list-style-type: disc;"> <li>1840: Intact rainforest</li> <li>1862: Area opened-up for selection</li> <li>1900: Cedar getters select large trees</li> <li>1910: Rainforest cleared and converted to pasture for dairying</li> <li>1911-1948: Area used for grazing dairy cattle</li> <li>1948: Area acquired for public use (water storage)</li> <li>1950-1989: Minimal management - land in transition (open public space)</li> <li>1950-1952: Rocky Creek Dam constructed</li> <li>1983-1990: Commenced experiments using assisted regeneration on small test plots</li> <li>1991-2000: Large scale assisted regeneration (25&nbsp;ha) by converting lantana thickets to rainforest</li> <li>2001-2011: Minimal management.</li></ul></br>

  • Categories    

    This is Version 1 of the Australian Soil Cation Exchange Capacity product of the Soil and Landscape Grid of Australia.<br></br> The map gives a modelled estimate of the spatial distribution of cation exchange capacity in soils across Australia.<br></br> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels).</p> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Cation Exchange Capacity (Units: meq/100g);</li> <li>Period (temporal coverage; approximately): 1970-2022;</li> <li>Spatial resolution: 3 arc seconds (approx 90&nbsp;m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF.</li>

  • Categories    

    This is Version 2 of the Australian Available Volumetric Water Capacity (AWC) product of the Soil and Landscape Grid of Australia.<br></br> The map gives a modelled estimate of the spatial distribution of AWC soil hydraulic property in soils across Australia.<br></br> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels).<br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Available Volumetric Water Capacity (Units: percent);</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx. 90m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF</li></ul>